Final Examination - KEY

COURSE : INE 320, Engineering Economy I
DATE : Monday, May 31, 2010
TIME : 8:00-10:00 a.m.
SEMESTER : Spring 2010
PROFESSOR : Dr. Raymond Ghajar

1. Your client must make a lump sum payment of $\$ 150,000$ at the end of 10 years. To accumulate the necessary sum, the client plans to make a series of 40 equal quarterly deposits into an account earning an interest of 1% per month. The first deposit is made now. Find the amount that needs to be deposited each quarter.
2. Deposits are quarterly, so the effective interest rate per quarter.
$i_{q}=\left(1+i_{m}\right)^{3}-1=(1+0.01)^{3}-1=\underline{3.0301 \%}$
Forty quarterly deposits starting now are equivalent to a future amount of $\$ 150,000$ at the end of 10 years using the following equation:
$\mathrm{A}(\mathrm{F} / \mathrm{A}, 3.0301 \%, 40)(\mathrm{F} / \mathrm{P}, 3.0301 \%, 1)=\$ 150,000$
$\mathrm{A}(75.9179)(1.0303)=\$ 150,000 \Rightarrow \mathrm{~A}=\$ 150,000 / 78.2182=\underline{\underline{\mathbf{\$ 1}, 917.71}}$
3. Find the value of A in the cash flow diagram shown below to establish
equivalence of cash inflows and outflows. Let $i=12 \%$ per year. Use one linear equivalence of cash inflows and outflows. Let $i=12 \%$ per year. Use one linear gradient series factor in your solution.

4. Economic equivalence is established at EOY9 as follows:
$[\$ 400(\mathrm{P} / \mathrm{A}, 12 \%, 4)-\$ 100(\mathrm{P} / \mathrm{G}, 12 \%, 4)](\mathrm{F} / \mathrm{P}, 12 \%, 10)+\$ 500(\mathrm{~F} / \mathrm{A}, 12 \%, 3)=$ A(F/A, 12\%, 5)
$[\$ 400(3.0373)-\$ 100(4.1273)](3.1058)+\$ 500(3.3744)=\mathrm{A}(6.3528)$
Solving for A gives $A=\frac{\$ 4,178.74}{6.3528}=\underline{\underline{\$ 657.78}}$
5. A city that is attempting to attract a professional football team is planning to build a new football stadium costing $\$ 12$ million. Annual upkeep is expected to amount to $\$ 25,000$ per year. In addition, the artificial turf will have to be replaced every ten years at a cost of $\$ 150,000$. Painting every five years will cost $\$ 65,000$. If the city expects to maintain the facility indefinitely, what will be its equivalent uniform annual cost using an interest rate of 6% ?
6. The effective interest rate for the 5 year period is $i_{5}=[1+0.06]^{5}-1=\underline{\underline{33.82 \%}}$

The effective interest rate for the 10 -year period is $i_{10}=[1+0.06]^{10}-1=\underline{\underline{79.08 \%}}$ The Capital Equivalent of the turf is: $C E(79.08 \%)_{\text {turf }}=\frac{\$ 150,000}{0.7908}=\underline{\underline{\$ 189,669.90}}$
The CE of the painting is: $C E(33.82 \%)_{P a \text { inting }}=\frac{\$ 65,000}{0.3382}=\underline{\underline{\$ 192,179.43}}$
The total annual equivalent uniform cost of the football stadium is:
$\mathrm{A}=\mathrm{A}_{\text {upkeep }}+i^{*}\left[\mathrm{I}+\mathrm{CE}_{\text {turf }}+\mathrm{CE}_{\text {painting }}\right]$
$\mathrm{A}=\$ 25,000+0.06 *[\$ 12,000,000+\$ 189,669.90+\$ 192,179.43]=\underline{\$ 767,910.96}$
4. Annual expenses for two alternatives have been estimated as shown below. If the average general inflation rate is 6% per year and the real interest rate is 9% per year, select the best alternative using the net present worth analysis.

End of year	Alternative A (Actual \$)	Alternative B (Constant \$)
1	$-120,000$	$-100,000$
2	$-132,000$	$-110,000$
3	$-148,000$	$-120,000$
4	$-160,000$	$-130,000$

4. Alternative A

The analysis can be done in constant or actual dollars as shown in the table. The PW will be the same regardless of which method is used.
$\bar{f}=6 \%$ and $i^{\prime}=9 \% \rightarrow i=i^{\prime}+\bar{f}+i^{\prime} \bar{f}=0.06+0.09+0.06 \times 0.09=\underline{15.54 \%}$

\mathbf{n}	$\mathbf{A}_{\mathbf{n}}$	$\left.\mathbf{A}_{\mathbf{n}}^{\mathbf{n}}=\mathbf{A}_{\mathbf{n}} \mathbf{(P / F}, \bar{f}, \mathbf{n}\right)$
1	$-\$ 120,000$	$-\$ 113,207.55$
2	$-\$ 132,000$	$-\$ 117,479.53$
3	$-\$ 148,000$	$-\$ 124,263.65$
4	$-\$ 160,000$	$-\$ 126,734.99$
$\mathbf{i}(\%)$	15.54%	9%
NPW	$\mathbf{- \$ 3 8 8 , 4 7 6 . 9 1}$	$\mathbf{- \$ 3 8 8 , 4 7 6 . 9 1}$

Alternative B

Here too, we can calculate the NPW using constant and actual dollars.

\mathbf{n}	$\mathbf{B}_{\mathbf{n}}$	$\mathbf{B}_{\mathbf{n}}=\mathbf{B}_{\mathbf{n}}^{\mathbf{\prime}} \mathbf{(\mathbf { F } / \mathbf { P } , \overline { \boldsymbol { f } } , \mathbf { n })}$
1	$-100,000$	$-106,000.00$
2	$-110,000$	$-123,596.00$
3	$-120,000$	$-142,921.92$
4	$-130,000$	$-164,122.00$
$\mathrm{i}(\%)$	9%	15.54%
NPW	$-\mathbf{\$ 3 6 9 , 0 8 5 . 2 1}$	$\mathbf{- \$ 3 6 9 , 0 8 5 . 2 1}$

$\mathrm{NPW}_{\mathrm{B}}>\mathrm{NPW}_{\mathrm{A}} \Rightarrow$ Select Alternative B.
N.B. Alternative B is a linear gradient series, so
$\operatorname{NPW}(9 \%)_{\mathrm{B}}=-\$ 100,000(\mathrm{P} / \mathrm{A}, 9 \%, 4)-\$ 10,000(\mathrm{P} / \mathrm{G}, 9 \%, 4)$
$\operatorname{NPW}(9 \%)_{\mathrm{B}}=-\$ 100,000(3.2397)-\$ 10,000(4.5113)=\mathbf{- \$ 3 6 9 , 0 8 5 . 2 1}$
5. A company involved in environmental restoration maintained a contingency fund of $\$ 10$ million. The company kept the money in a stock market fund, which earned 16% per year. The inflation rate during the 5 -year period the company had the money invested was 5% per year.
(a) How much money did the company have at the end of the 5-year period?
(b) What was the buying power of the money in terms of dollars when the investment was originally made?
(c) What was the company's real rate of return on the investment?
5. $\mathrm{P}=\$ 10,000,000 \quad \mathrm{i}=16 \% / \mathrm{yr} \quad \bar{f}=5 \% / \mathrm{yr}$ for 5 years
(a) The amount of money available at EOY5 is:
$\mathrm{F}=\mathrm{P}(1+\mathrm{i})^{5}=\$ 10,000,000(1.16)^{5}=\$ 21,003,416.58$
(b) The true buying power of the investment is calculated using the inflation-free interest rate.
$i^{\prime}=\frac{i-\bar{f}}{1+\bar{f}}=\frac{0.16-0.05}{1+0.05}=\underline{10.476 \%}$
$\mathrm{F}^{\prime}=\$ 10,000,000(1+0.10476)^{5}=\underline{\$ 16,456,726.47}$
(c) The real ROR on the investment is the inflation-free interest rate.
$\boldsymbol{i}^{\prime}=10.476 \%$
6. The engineer at the Smoke Ring Cigar Company wants to do a Rate-of-Return analysis for two wrapping machines. The details below are available but the engineer does not know what value to use for a MARR since some projects at the company are evaluated at 5% and some at 6%.

	Cost items	Machine A	Machine B	
	First cost (\$)	10,000	9,000	
	Annual labor cost (\$/yr)	5,000	5,000	
	Annual O\&M cost (\$/yr)	300	500	
	Salvage value (\$)	1,000	1,000	
	Useful life (years)	6	6	
	Calculate the Internal Rate of Retur whether the difference in MARR which machine to buy.	he incrementa would chang	vestment and he decision	
6.	Since both machines have equal liv	ncremental	flow is gi	S
	Cost items	A-B		
	First cost	1,000		
	Annual costs	-200		
	Salvage value	0		
	The breakeven interest rate must satis $\mathrm{NPW}\left(\mathrm{i}^{*}\right)_{\mathrm{A}-\mathrm{B}}=-\$ 1,000+\$ 200(\mathrm{P} / \mathrm{A}$, By linear interpolation, the value of	he following $=0$ found as show	ation: elow:	
	Action	NPV		
	Initial value	$\$ 15$		
	Increase i	-\$16.	351	
	Interpolate	78 -\$0	529	
	$\begin{aligned} & \text { NPW }_{\text {A-B }}(5.478 \%) \approx 0 \Rightarrow \underline{\underline{\mathbf{i}^{*}}=\mathrm{IRR}} \\ & \text { If } \underline{\underline{\text { MARR }}=5 \%} \Rightarrow \operatorname{IRR}>\text { MARR } \\ & \text { If } \underline{\underline{\text { MARR }=6 \%} \Rightarrow \operatorname{IRR}<\text { MARR }} \\ & \text { So the difference in MARR does } \\ & \text { which machine to buy. } \end{aligned}$	78% hoose A hoose B an impact on		
7.	Two years ago the annual inflation 20%. Last year these rates were 8 free rates for each of the last 2 year year period.	as 12% and 13%, respec then find the	annual intere ely. Find the rage value	P
7.	The inflation market interest rates $\overline{f_{-2}}=12 \%, \overline{f_{-1}}=8 \%, i_{-2}=20 \%$ The inflation-free interest rate for the	last two years $=13 \%$ two years is	given by: ulated as foll	S

$i_{-2}^{\prime}=\frac{i_{-2}-\overline{f_{-2}}}{1+\overline{f_{-2}}}=\frac{0.2-0.12}{1+0.12}=\underline{\underline{7.1429 \%}} ; i_{-1}^{\prime}=\frac{i_{-1}-\overline{f_{-1}}}{1+\overline{f_{-1}}}=\frac{0.13-0.08}{1+0.08}=\underline{\underline{4.6296 \%}}$
The average inflation-free interest rate for the 2-year period is:
$\left(1+\overline{i^{\prime}}\right)^{2}=\left(1+i_{-1}^{\prime}\right)\left(1+i_{-2}^{\prime}\right)$
$\overline{i^{\prime}}=\sqrt{\left(1+i_{-1}^{\prime}\right)\left(1+i_{-2}^{\prime}\right)}-1=\sqrt{(1+0.046296)(1+0.071429)}-1=\underline{\underline{5.8788 \%}}$
8. An automatic block-making machine is available for $\$ 50,000$. Your best
estimates indicate that it will be worth $\$ 10,000$ when you expect to dispose of it at the end of five years. It is capable of producing 100,000 blocks per year at a net profit before taxes of $\$ 0.20$ per block.
Find the annual cash flow after taxes for the machine using the double declining balance depreciation method. Use a 28% tax rate.
8. The DDB depreciation schedule is given by:

n	$\mathbf{B}_{\mathrm{n}-1}$	D(DDB) ${ }_{\mathbf{n}}$	D(SL) ${ }_{\text {n }}$	$\mathbf{B}_{\text {n }}$	Decision
1	\$50,000	\$20,000	\$8,000	\$30,000	No switch
2	\$30,000	\$12,000	\$5,000	\$18,000	No switch
3	\$18,000	\$7,200	\$2,666.67	\$10,800	No switch
4	\$10,800	\$800	\$400	\$10,000	Stop
5	\$10,000	-	-	\$10,000	Stop

The cash flow is calculated in the following table as follows:
Taxable Income $=$ Profit - Depreciation
Income Tax $=$ Tax rate $*$ Taxable Income
Net Income $=$ Taxable Income - Income Tax
Cash Flow $=$ Net Income + Depreciation

\mathbf{n}	Profit	D(DDB)	Taxable	Income income	Net tax	Cash income
flow						

